48 research outputs found

    simpleISM—A straight forward guide to upgrade from confocal to ISM

    Get PDF
    Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations

    Porphyrin Cobalt(III) “Nitrene Radical” Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH)

    No full text
    In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from the OH or NH2 group in the ortho-position to the nitrene moiety of the key radical-intermediate was observed. This leads to formation of reactive ortho-iminoquinonoid (Y = O) and phenylene diimine (Y = NH) species. These intermediates convert to subsequent products in non-catalyzed reactions, as is typical for these free organic compounds. As such, the observed reactions prevent the anticipated cobalt-mediated catalytic radical-type coupling of the nitrene radical intermediates to alkynes or alkenes. Nonetheless, the observed reactions provide valuable insights into the reactivity of transition metal nitrene-radical intermediates, and give access to ortho-iminoquinonoid and phenylene diimine intermediates from ortho-YH substituted aryl azides in a catalytic manner. The latter can be employed as intermediates in one-pot catalytic transformations. From the ortho-hydroxy aryl azide substrates both phenoxizinones and benzoxazines could be synthesized in high yields. From the ortho-amino aryl azide substrates azabenzene compounds were obtained as the main products. Computational studies support these observations, and reveal that HAT from the neighboring OH and NH2 moiety to the nitrene radical moiety has a low energy barrier

    Porphyrin Co(III)-Nitrene Radical Mediated Pathway for Synthesis of o-Aminoazobenzenes

    Get PDF
    Azobenzenes are versatile compounds with a range of applications, including dyes and pigments, food additives, indicators, radical reaction initiators, molecular switches, etc. In this context, we report a general method for synthesizing o-aminoazobenzenes using the commercially available cobalt(II) tetraphenyl porphyrin [CoII(TPP)]. The net reaction is a formal dimerization of two phenyl azides with concomitant loss of two molecules of dinitrogen. The most commonly used methodology to synthesize azobenzenes is based on the initial diazotization of an aromatic primary amine at low temperatures, which then reacts with an electron rich aromatic nucleophile. As such, this limits the synthesis of azobenzenes with an amine functionality. In contrast, the method we report here relies heavily on the o-amine moiety and retains it in the product. The reaction is metal catalyzed and proceeds through a porphyrin Co(III)-nitrene radical intermediate, which is known to form on activation of organic azides at the cobalt center. The synthesized o-aminoazobenzenes are bathochromatically shifted, as compared to azobenzenes without amine substituents. Based on the crystal structure of one of the products, strong H-bonding between the N-atom of the azo functionality and the H of the NH2 substituent is shown to stabilize the trans isomeric form of the product. The NH2 substituents offers possibilities for further functionalization of the synthesized azo compounds

    Porphyrin Cobalt(III) “Nitrene Radical” Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH)

    No full text
    In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from the OH or NH2 group in the ortho-position to the nitrene moiety of the key radical-intermediate was observed. This leads to formation of reactive ortho-iminoquinonoid (Y = O) and phenylene diimine (Y = NH) species. These intermediates convert to subsequent products in non-catalyzed reactions, as is typical for these free organic compounds. As such, the observed reactions prevent the anticipated cobalt-mediated catalytic radical-type coupling of the nitrene radical intermediates to alkynes or alkenes. Nonetheless, the observed reactions provide valuable insights into the reactivity of transition metal nitrene-radical intermediates, and give access to ortho-iminoquinonoid and phenylene diimine intermediates from ortho-YH substituted aryl azides in a catalytic manner. The latter can be employed as intermediates in one-pot catalytic transformations. From the ortho-hydroxy aryl azide substrates both phenoxizinones and benzoxazines could be synthesized in high yields. From the ortho-amino aryl azide substrates azabenzene compounds were obtained as the main products. Computational studies support these observations, and reveal that HAT from the neighboring OH and NH2 moiety to the nitrene radical moiety has a low energy barrier

    Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration

    No full text
    In the present data article we report the in vitro and in vivo biocompatibility of fabricated nerve conduits described in Das et al. [1]. Green synthesised gold nanoparticles (GNPs) were evaluated for their cytotoxicity in rat Schwann cells (SCTM41). We also describe herein the adhesion and proliferation of Schwann cells over the nanofibrous scaffolds. Methods describing surgical implantation of conduits in a rat sciatic nerve injury model, confirming its accurate implantation as well as the porosity and swelling tendency of the nerve conduits are illustrated in the various figures and graphs

    Genomic Characterization of Nipah Virus, West Bengal, India

    Get PDF
    An intrafamilial outbreak in West Bengal, India, involving 5 deaths and person-to-person transmission was attributed to Nipah virus. Full-genome sequence of Nipah virus (18,252 nt) amplified from lung tissue showed 99.2% nt and 99.8% aa identity with the Bangladesh-2004 isolate, suggesting a common source of the virus
    corecore